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The linearized problem of the instability of a layer of liquid flowing down an 
inclined plane was formulated by Yih (1954) and was solved by Benjamin (1957). 
It was found that the instability of such a film flow is initially due to long surface 
waves of infinitesimally small amplitudes. In  the present study, a closed-form 
expression for the non-linear development of these long surface waves is obtained. 
It is shown that in the neighbourhood of the neutral curve an exponentially 
growing infinitesimal disturbance may develop into supercritically stable wave 
motion of small but finite amplitude if the surface tension of the liquid is suffici- 
ently large. Theoretically obtained amplitudes of such waves are consistent with 
Kapitza’s (1949) observation. The approach used in this analysis is a modification 
of the method used by Reynolds & Potter (1967), who extended the method of 
Stuart (1960) and Watson (1960) in their study of the non-linear instability of 
plane Poiseuille and Poiseuille-Couette flow. 

1. Introduction 
Stuart (1960) has derived from the Navier-Stokes equation the following 

expression which governs the non-linear growth of a periodic finite disturbance 

where A is the disturbance amplitude, a the wave-number and ci the imaginary 
part of the eigenvalue obtained in the linearized stability theory. d21 in the above 
equation, which was first suggested by Landau (1944), is sometimes called 
Landau’s second coefficient. In  the linearized theory, the last term in the above 
equation is negligibly small and the disturbance will grow or decay exponentially 
according to whether ci is positive or negative. However, the exponential growth 
of infinitesimal amplitude will immediately make the last term in the above 
equation significant and the sign of d21 plays an important role in the non- 
linear development of the initial disturbance. The analytic methods of deter- 
mining the second Landau coefficient for plane Poiseuille flow have been given 
by Stuart himself and by Watson (1960) and also by Eckhaus (1965). The 
numerical evaluation of d21 was carried out only recently by Reynolds & Potter 
(1967) and also by Pekeris & Shkoller (1967). By extending the method of Stuart 
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& Watson, Reynolds & Potter studied the instability of both plane Poiseuille 
flow and Poiseuille-Couette flow with respect to a bite-amplitude periodic 
oblique wave. Pekeris & Shkoller assumed the periodic disturbance to be two- 
dimensional and their method of analysis is primarily that of Eckhaus. The 
numerical result presented in these two papers indicates, as was pointed out by 
Reynolds, that plane Poiseuille flow will exhibit subcritical instability but no 
supercritical equilibrium flows. The non-linear instability of a boundary layer 
with respect to another type of three-dimensional disturbance is given by 
Benney (1961). 

In the following sections, Stuart’s approach is applied to investigate the 
stability of a falling liquid film with respect to a two-dimensional periodic dis- 
turbance of finite but small amplitude. Reynolds’s expansion formalism is 
applied in formulating the boundary conditions. The second Landau coefficient 
and the wave speed in closed forms are then obtained by solving a sequence of 
non-homogeneous differential systems. Theoretical results are then compared 
with the observations of Kapitza (1949) and Binnie (1957). 

2. Formulation of the problem 
Consider a steady laminar layer of liquid flowing down an inclined plane under 

the action of gravity as shown in figure 1. A smooth surface of this film cannot be 
maintained at arbitrary Reynolds numbers. Two-dimensional periodic finite- 

FIQURE 1. Definition sketch. 

amplitude wave motion has been observed by Kapitza (1949) and Binnie (1957) 
when the Reynolds number of the flow exceeds some critical values. In  order to 
study the formation of such waves one chooses with Reynolds & Potter (1967) 
the wave amplitude A,  the phase 0 of the wave motion and the distance measured 
normally downward from the unperturbed free surface as independent variables. 
In these independent variables, the Navier-Stokes equation can be written as 
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where R and P are properly defined Reynolds and Froude numbers, u and v 
the velocity components in the x- and y-directions, /3 the angle of inclination of 
the plane, a the wave-number and w the frequency of the wave motion assumed 
to depend on the amplitude A .  a and w are related to the phase 8 of the basic 
wave by 8 = ax+ w(A)t. 

The equation of continuity in the same independent variable is 

which enables one to define a streamfunction 9 such that 

au = apjay, -v = a+pe. (3) 
In  order to reduce (1) into a set of sequentially solvable equations, one formally 

introduces the following series expansions in terms of finite but small amplitudes : 

$(A, y ,  8) = aAn$,(k; N(y) e.lk@ + aA*$(k; n)(y) e-ikg, (4) 

( 5 )  
dA 
at 

A-1 - = a@) +AatU + A2a(2) + . . . = A"&), 

where the bar denotes the complex conjugate. The superscript convention intro- 
duced in (4) indicates a sum over all k and over all n 2 k. (For the details of this 
convention see Reynolds & Potter (1967).) Since the unperturbed flow is the 
primary flow, one must have from (3) and (4) 

= 20#(0; 0) = 2D$(O; O), with D d/ay. (7) 
Equation (5) is evidently valid in the neighbourhood of the neutral curve 
obtained with linearized theory and (6) is essentially a Poinear6 eigenvalue 
stretching of the wave speed. 

The pressure term in (1)  can be eliminated by a cross-differentiation to yield 
a vorticity equation. Substituting (3) to (7) into the resulting vorticity equation 
and demanding the coefficient of An in each harmonic to vanish, one has 

L,, # I k ;  nl = iac[n-llGS,, + N,,, (8) 

where Sij is the Kronecker delta, 
iac(n) = - a(%) - i bh )  
G = ( 0 2  - a2) #[I; 11, 

L,, = ik[( -i(n/k)a(o)+b(0)+a;El)(D2-k2a2) -a(D2U)]- R-1(D2-k2a2)2, (9) 
Hkn = - (md"-ml+ ikb[n-ml) (D2 - k2a2) #k "1 + Fkn/( 1 + SILO), 

(i (k +j) [ 0 2  - (k +j ) za2]  p + i ;  "1) - D@c+i; n-ml ) ( - ij [ 0 2  - j 2 a 2 ]  p; "I) 

x (D [ 0 2  - (k +j)2&2]  #[k+i; "1) + (i (k +j) $,[k+i; n-ml ) (D[D2-j2$]$r,Ij;"l). 

(10) 
p la = - (D#k--i; n-ml) (ij [p - j za2 ]  $,[k " 1 )  - (D$V; n-ml) 

k n  

+ (i (k -j) #k-j; n-ml) (D [ 0 2  -pat] #[k " 1 )  + ( - ij$[k n-ml) 

(11) 
8-2 
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In the above expressions, the delimiter [ ] is used to indicate that the integer 
inside it must be greater than one and (k; n> means 0 < k < n 2 1. It will be seen 
shortly that (8) with proper boundary conditions is sequentially solvable. The 
decoupling of the original non-linear momentum equation is achieved by the 
expansion (4). In (4) it is implied in reality that the part of the solution of (1) 
which is of order An depends only on the first (n- 1) harmonics (by the nth 
harmonics one means terms proportional to exp (id)). It is this feature of the 
particular disturbance which enables one to build a non-linear solution on the 
solution obtained with the linearized theory. 

The above recapitulation of Reynolds & Potter’s derivation of the vorticity 
equation which governs the amplitude variation function qYk; nl for all harmonics 
is only for the purpose of providing sufficient information for further develop- 
ment. For the details of the derivation, readers are referred to Reynolds & Potter’s 
original paper. It should be pointed out that the expansion of the streamfunction 
(4) is different from Reynolds’ only by a factor a; this factor is introduced to 
avoid an overstretching of the shape of the free surface which appears in the 
boundary conditions. This modification also results in a difference by a factor a 
in the expression for Fkn. 

The boundary condition at  the fixed plate is the non-slip condition, i.e. 

Neglecting the viscosity of the air and the inertia force at the interface, the free 
surface boundary conditions are simply the vanishing of tangential and normal 
forces, i.e. 

and 

where k is the curvature of the perturbed surface y = q(x,t) and S is a Weber 
number defined by S = T/pdut in which T is the surface tension, and ga 
is the average velocity of the primary flow and is given by 

Ua = gd2sinp/3v9 

in which v is the kinematic viscosity of the fluid. 
The pressure in the above boundary conditions is related to the velocity field 

by the momentum equation (1) and expressible in terms of qSk; nl. To do so one 
expands the pressure p together with the streamfunction in terms of their 
harmonics, i.0. 

p = P ( ~ ) ( A ,  y) eike +p(k) (A,  y) e--ike, 

$ = $(k)(A, y) eike + $(k)(A, y) e--ike. 

Substituting the above expressions and (3) into the first equation of (1)) one has 
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by virtue of ( 5 )  and (6)  the following expression for the coefficient of eikR : 
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The above equation is non-linear and coupled. In  order tjo decouple it one seeks 
a solution of p in the form p(k) = p(k n)An. Substituting this expression and (4) 
into the above equation and assuming the pressure distribution remains hydro- 
static for the mean flow which is modified by the non-linear effect (i.e. 
p(@ O) = jY0; O) = y cos P/2F2 and p(e n, = Fco; n, = 0 for any n > 0) ,  one has from the 
coefficient of An : 

and 

Since D3qW 0)  = D3$@ 0) = gD2U by virtue of (7), the above equation gives 

3F2 = R sin p, 
which is the relation between the Froude number and the Reynolds number in 
the primary flow (Yih 1963). 

On the other hand, the kinematic boundary condition at  the free surface 
demands 

v=- D7 at y = q(z , t ) .  
Dt 

Expanding v into Taylor's series around y = 0, the above equation can be 
written as 

where primes denote differentiation with respect to y. With ZG, v given by (3) and 
(4) one naturally seeks a solution of 7 in the following form: 

7 = ~ ( k  M(z, t)An@R + q ( k ;  d(z, t)Ane-ik@. (16) 

With exactly the same method which is used for obtaining (15), one can obtain 
from the above equation a lengthy recurrence formula for q[k;nI which is given 
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by (A 1) in the appendix. Thus, p and 9 can be expressed sequentially in terms of 
$[k; nl and qW nl(O), and thus the boundary conditions (13) and (14) can be reduced 
to expressions involving $[k nI(0) only. To see this, one expands (13) and (14) into 
Taylor's series around y = 0, i.e. 

a m  a m  

aY n=O 
- C (Dnu/n!),yn+- C (Dnv/n!),yn = 0, 

2 8  - (D"p/n!),y/"+-- = 0 at  y = 71. 
n=O R aY 

m 

Substituting (3), (4), (16) and p = p[k;nlAneike+p[k;nlAne-iks into the above 
equation, one has from the coefficient of An of each harmonic the boundary 
conditions (A 2) and (A 3) given in the appendix with p[k; nl(0) given by (15) and 
q[k;  given by (A 1). 

Thus the problem is reduced to solving sequentially a set of non-homogeneous 
fourth-order systems of the following form: 

L $[k; nl = iac["-UGS kl+Hkn, U($['"l)m = Ym (m = 1, 2,  3, 4), (17) 
k n  

in which iadn-ll = - dn-l1 - ibLn-l1 and the second equation stands for the four 
boundary conditions. (Two of them are always homogeneous but the two at the 
free surface may be non-homogeneous.) The solution of the above system is, in 
general, unique unless the associated homogeneous system 

Lkn$[k; nl = 0 , u ($R "1) = 0 

possesses eigensolutions. In  that case the solution of the non-homogeneous 
system can be found only for particular values of dn-l1. One method of deter- 
mining dn-11 is to consider the adjoint homogeneous system (Ince 1926, 
chapter 9) 

where the adjoint differential operator L* is related to L k n  by 
L*v = 0, Vm(W) = 0 (m = 1, 2, 3, 4), (18) 

{ V L  ( p  nl) - p; nlL*v} dy = b(p; f i l ,  ,7432. 

[p-g = u, v, + u, v, + . . . + v, v,, 

(19) J;: kn 

Here the right-hand member is an ordinary bilinear form and thus reducible 
to a canonical form 

in which Urn (m = 1 , 2 ,  . . . , 8) are any linearly independent homogeneous expres- 
sions in $[k nl and its derivatives up to the third order evaluated a t  the end-points 
y1 and y2. In particular, U,, U,, U, and U, can be taken to be the left side of the 
boundary conditions of the non-homogeneous system (17). Once U, to U, are 
chosen, V, to V, are uniquely determined by the above equation. Hence, if u is 
the eigensolution of the adjoint system (18) and satisfies 

(20) 1:; V [iac[n-11G8kl + H k n ]  dy = 71 V, + 7'2 V, -I- 7'3 V, 7 4  V,, 

i a ~ " + ~ ] J ~ ,  vGdy = yIV,+ ... +y4G-/Y, vHlndy. 

then the system (1  7) may have a solution and dn-l1 is given by 
Y1 Y, 

(21) 
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It should be pointed out that the adjoint system is assumed to possess eigen- 
solutions. However, this is true only when the associated homogeneous system 
possesses eigensolutions. 

3. Solution of the problem 
A brief outline of the solution to the above-formulated problem will now be 

given. 
First consider the component with k = 1 and n = 1. Substituting these values 

of k and n into (8)) one obtains the equation governing the amplitude variation 
function qSc l) associated with the basic harmonic of order A 

{(a@) + ib(0) + iaz)  ( 0 2  - $) - iaD2E - & - 1 ( 0 2  - qV1; 1) = 0. 

The boundasy condition a t  the fixed wall is simply 

$(%I) = Q$1;1) = 0 a t  y = 1, 

and from (A2) and (A 3) with (15) and (A 1) the free surface boundary conditions 
are found to be 

p p  1) + [ a 2  - 3 4  - bC0) + ia@) - &(0))] p 1) = 0, 

[t1.2(3c0t,8+a2SR)/( -b(O)+i~(~)-au(O))]4(~;')+ [R( -b(O)+ia(o)-aii(O)) 
+ 3ia2] DqV: 1) - iD3$(191) = 0 a t  y = 0. 

If one puts b ( O )  = -ax, and a(0) = aci 

in the above differential system, one recovers the Orr-Sommerfeld problem for 
the film flow which was formulated by Yih (1954). The solution of this problem 
was first correctly obtained by Benjamin (1957) up to the first order in small aR. 
The solution accurate to the order can be easily obtained with Yih's (1963) 
method. The eigenfunction $(l; l) obtained from a homogeneous system is deter- 
mined only up to an arbitrary constant multiplier. 

For n = 1, k = 0,  one has the system 

(a&$ - 0 4 )  qy0; 1) = 0, 

$(0; 1) = &yO; 1) = 0 a t  y = 1, 
D24'0;1) = (0;U = 0 a t  y = 0. 4 

With ci given as the imaginary part of the eigenvalue in the linearized theory, 
the above system has only a trivial solution. All other components of order A 
(i.e. k > 1)  vanish according to our expansion formalism. 

Similarly, for n = 2, only waves with harmonics lower than the second (i.e. 
k 6 2) can be of order A2. Thus, for n = 2, the only values of k that need to be 
considered are 2, 1 and 0. From (8) with n = 2, k = 1, one has 

i [( - 2ia(o) + bco) + au) ( 0 2  - $) + 3a1 $(c 2) - ~ - 1 ( p  - $)2+(3; 2) 

(22) = ia(jll(D2 - $) $(l; 1). 

The corresponding boundary conditions can be obtained again from (12)) (A 2) 
and (A 3). It can be shown that c[ll = 0. The solution #c 2)is then readily obtained. 
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Similarly, $(%2) and $(2;2) can be obtained. The computation is lengthy but 
straightforward and thus its detail will be omitted. 

Finally, to obtain the second Landau coefficient, one considers the component 
with k = 1 and n = 3. From (8),  one has the following equation which governs 
$1: 3) : 

L13 3, = i c ~ ~ [ ~ l G '  + Hl3, (23 )  
where 

L13 = - (0' - + iR [( - 3id0) + b(O) + as)  (D2 - a2) - aD2ii], 
G' = R ( 0 2  - 012) $(% U, 

12' - iaR [ - D @ %  2)('2 - 012) $(I; 1) - D$(O; 2)(D2 - a2) $(I; 1) 

+ D@Z; 2)(D2 - as) $0; 1) - $(% 1)D ( 0 2  - 4a2) $(% 2'1. 

13 - 

From ( 1  3 ) ,  one has the boundary condition at the fixed floor 

#(%a) = &5(1:3) = 0 at y = 1. (24) 

( 2 5 )  

From (A2) and (A 3 )  one has the vanishing of the shear stress at  the free surface 

D2Q(l; 3, + [a2 - 3/(c' + Zit,)] $(I; 3) = y3 at y = 0 

and the condition on normal forces at  the free surface 

where y3 and y4 are known functions of order l/aR. 
To obtain d21 from (21 )  with ys  given on the right sides of the boundary con- 

ditions, one still needs the solution v of a homogeneous system which is adjoint 
to (24) with (25) and (26). To obtain w one rewrites L,, in the following form: 

where 
L13 = -D4+pzD2+p,, 

p 2  = 2a2 - iaR [c + 2ic, - $( 1 - y2)],  

p ,  = ia3R [c + 2ici - $( 1 - 92)  + 3 i a R  - a4]. 

The adjoint differential operator LF3 is easily found to be (Ince 1926) 

L& = - D4 + D2p2 + p,. 

L13 and LF3 are related by the relation given by (19 )  with k = 1, n = 3. For the 
present problem, the right side of (19 )  is simply 

P = 4 [ - D(pZv)  + D3v] + D$ ~ Z W  - D'v] +D2$ [Dv] - D3$ [v] ,  

in which $ stands for $(% 3). 

Thus one has 

ij~]; = $ ~ ~ ~ - ~ 2 ( ~ ) ~ ~ v ~ + 3 ~ a R $ l ~ l + ~ 2 ( ~ ) $ ~ v l - ~ ~ ~ ~ + $ ~ v ~ - v l ~ ~  
- $0.; +PAC') dovA-Pd0) $690 + @l($o + vi$A + UooQ;, (27) 

where primes denote differentiation and the subscript 0 or 1 denotes the end- 
point y = 0 or y = 1 where a function is to be evaluated. It can be shown that 
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the right side of the above equation is an ordinary bilinear form and thus is 
reducible to a canonical form 

v, v, + u, v, + . . . + u,v,, 
where the U s  are any linearly independent homogeneous algebraic expressions 
in $[l; 31 and their derivatives up to the third order evaluated at  end-points. Here 
one takes U,, U,, U3 and U, to be the left sides of the four boundary conditions 
given by (24 ) ,  (25) and ( 2 6 ) ,  and U,, U,, U, and U, will be taken in such a way that 
all Us are linearly independent. For example, U, = q+,, U, = &,, U, = & and 
U, = $’:. Once Us are so chosen V,  (n = 1 ,  2 ,  ..., 8) are uniquely determined by 
( 2 7 ) .  They are found to be 

v, = -vl, v, = w;, v, = v;l+a2vo, 

v, = vo, v, = -TI;, 

iaRQ V, = - v: + [a2 - iaR (c’ + 2icJ + 3/(c’ + 2ici)]  vh - ?. vo, 1 ( 2 8 )  
c +22c, 

V ,  = [2a2 - iaR (c’ + 2 i c , ) ] ~ 1 -  vl;, 

V, = V; - [2a2 - ia (c’ + 2ici)l V ;  + 3iaRv1. 

Thus, the adjoint system is found to be 

L&v = 0, v, = 0 (n = 1, 2 ,  3 ,  4 ) ,  (29 )  

with 17, given by the first four equations in (28). If this adjoint system possesses 
a non-trivial solution then cL21 has to be obtained from ( 2 1 ) .  

The first-order solution of (29) is non-trivial and is given by 

v = ( 1  - 3 4 2 )  - ( ~ 3 1 2 ) .  (30) 

Fortunately, only this accuracy is needed for the evaluation of c@]. This can be 
seen from the following order-of-magnitude argument. Observe that y1 = 0, 
y2 = 0 and y3 as well as y, is of order l / aR ,  while V, and V, are of order 1. Hence 
the right side of (20) is of order l / aR .  On the other hand, Hi3 is of order aR and G‘ 
is of order 1, and cLzj will be found afterwards t o  be of order 1. Therefore the left 
side of (20) is of order aR. To neglect a term of order aR in v amounts to neglecting 
a term of order (aR)2 compared with a term of order l / a R  in (20). Thus c[21 

obtained from (20) or ( 2 1 )  with v given by (30) is significant up to order ( Z R ) ~ .  
Substituting the known functions Hi3, G’, v and the known constants y3, y4 

(yl = y2 = 0) ,  1; and V, into (21 ) ,  one has from its real and imaginary parts (after 
some algebra), 

(31) I - ~ R ( ~ / ~ + ~ c o ~ P / ~ R ) c ~ ~ I - ~ c L ~ I  = R,, 
- 2ci21 + aR (514 + 4 cot /3/3R) cL21 = R 27 

where 
R, = 4ao, - 2al, + 23ciao,/12 

+aR[(7Q/36+8cotP/3R-6)aoi- (4cotP/3R-5/4)a1,-  7a2,/5], 

R,  = 4aOi - 2aiT - 23cia,,/12 

-aR[7Q/36+ 8cotpl3R- 6)a0,- (4cot/3/3R-5/4)a1,- 7a2,/5], 
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in which the subscript r or i denotes the real or imaginary part of the integra- 
tion constants for #2,2). Solution of (31)  gives 

c!,21= -- uR 8 8  4ci [ ( - - - ) ( 8 - 4 ~ + 9 ) 1  23ci 17 22Q 
D R2 N 3  

and 
23c .  17 229  

c[21 = -  N2 -+- 8 --- 8 - - 2  -+--  
' D  ' [  (:6 c ~ ~ p ) [ ( ~  ;3)[ 2 4 N ( 5  9 ) )  

- (TQ +--+- 64cotP 2ci 
3 R  3 N  

where N = aR, 
W = 805Q/2352 - 437ci/112N - l l a 2 S / 7  - 48/R2,  

D = N 2  W 2  + (4Sa2 - 2cJN )2. 

Landau's second coefficient being defined as aci2], thus depends on surface 
tension, the angle of inclination of the plane, the ReynoIds number and wave- 
length according to (32).  It is observed that is not always negative. For 
example, for values of P = go", X = 0 and ci of order ( E B ) ~ ,  the first term in (32)  
is dominant and is thus positive. Hence one concludes that for a liquid with 
zero surface tension a supercritically stable wave motion in a vertically falling 
film is impossible. However, such a wave motion is possible for liquids with 
sufficiently large surface tension, as the following numerical examples will show. 
It is seen from (5) that, for a flow with a negative value of d21 in a supercritical 
region (ci > O ) ,  the exponential growth of the initially infinitesimal wave is 
modified according to the following equation : 

-- - acd A + d21A3, dA  
dt 
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where higher-order terms in (5) are neglected. The general solution of the above 
equation is easily obtained as (Schade 1964) 

in which to is a constant of integration which only changes the origin of the time 
axis. Thus, as t goes from - 03 to + 03, the amplitude increases from zero to a con- 

(34) 
stant value A = - aci/aI2l. 
On the other hand, the speed of the initial wave is modified according to (6) and 

(35) 
attains a constant wave speed 

as the amplitude attains the constant value given by (34). 
The above results will now be compared with Kapitza’s (1949) experimental 

results. Kapitza observed a stable wave motion on a vertically falling water film 
at  15 “C. The following quantities were measured: d = 0.013 em, A = 0.16d (from 
figure 1.3 on page 704 of Kapitza’s collected work), wavelength h = 0.89 cm, 
C = 12.4 cm/sec, dE, = 0.061 cm3/sec, surface tension v = 74 dyne/cm. From 
these data one obtains a = 0.092, ci = 0.2325, R = 5-38, N = 0.495, S = 258.3, 
Q = 2.2. Substituting these values into (32), one finds ck21 = - 9.69 and hence, 
from (34), A = 0.156d, which compares very well with the measured value of 
0-16d. Similarly, one finds cL21 = 1-11 from (33), and from (35) C is found to be 
3.O27Ua, which is considerably larger than the measured value of 2.64Ea. Kapitza 
also used alcohol in his experiment. The measured quantities are: d = 0.0162 em, 
A = 0-17d, h = 0-71 cm, dE, = 0.06 cm3/sec, v = 29 dynelcm, C = 10.7 cmlsec. 
Prom these data, one obtains a = 0.1438, ci = 0.26, R = 3-35, N = 0.481, 
S = 96.0, Q = 1-98. Substituting these values into (32) and (33), one finds 
c[i21 = - 9.39 and cpl = 3-26 and then, from (34) and (35), A = O.l63d, C = 3.086Ea. 
Again, calculated amplitude A = 0-163d compares very well with the measured 
value of A = 0-17d but the calculated wave speed E = 3.0862, is larger than the 
experimental results of C = 2*5U,. It is very puzzling that the speed of finite- 
amplitude wave motion observed by Kapitza is always smaller than the speed 
of the infinitesimal surface wave, which is known to be equal to 3Ea. Kapitza’s 
observation is in fact contradictory to Binnie’s ( 1957) observation. In  Binnie’s 
experiment, it  was found that the speed of the finite-amplitude wave is greater 
than 3Z,. The following quantities were measured by Binnie for a water film at 
19OC: d = 4.4 x 10-3 in., h = 0-45 in., the flow rate = 6.9 x 10-3 in.Z/sec, C = 5.5 
in./sec. From these values and using v = 0.00499 Lb./ft., v = 1-09 x ft.2/sec, 
one obtains a = 0.0615, R = 4.4, N = 0.271, C = 3.51Ua, ci = 0.1815 and 
Q = 1.59. On the substitution of these values into (32), (33) and (34), one finds 
A = 0.145d and ck21 = 0.825. Unfortunately, the amplitude was not recorded in 
Binnie’s experiment and a direct comparison is not possible. However, if one 
substitutes this value of A and cL21 = 0.825 into (35), one has C = 3*0173Z,, which 
is smaller than the observed value of 3.51Za. Thus the present theoretical result 
predicts a greater wave speed than that observed by Kapitza but a smaller wave 
speed than that observed by Binnie. 

c = (c, + A2Cp) Z,, 
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The comparison between the theory and Kapitza's observation has been made 
only for two experimental points. The comparison for other experimental points 
is not possible either because the observed waves are so short that aR is no 
longer small and the theory does not apply or because an accurate reading of the 
film thickness from Kapitza's photographs even with the aid of a microscope 
is not possible. 

4. Conclusion 
A closed-form solution for the non-linear development of an initially infinites- 

imal periodic two-dimensional disturbance is given. It is shown that super- 
critically stable wave motion is possible in a viscous film. The dependence of the 
amplitude and the propagation speed of such stable waves on the surface tension 
of the fluid, the Reynolds number of the flow, the wavelength and the angle of 
inclination is given explicitly. The agreement between the theoretically pre- 
dicted wave amplitude and the observed values is excellent. The unsatisfactory 
agreement between theory and observation on the wave speed is conjectured to 
be due to the presence of surface contamination in the experiments. To verify 
this conjecture a rigorous analysis, together with a careful experiment on the 
effects of surface-active agents, is necessary. 

Appendix 
In the following equations, primes denote differentiation with respect to y and 

a bar denotes complex conjugate. All functions are evaluated at  y = 0 and k >, 1. 
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The normal boundary condition at the free surface (k 1) 

1 -p(k n) - LZ)V-m; n--9) (m; 9) +pl(k+m; n-q)-(m; q) + pYm; P) 7(k+m; n-p) 7 7 

- Sk2aZq("; n) + O(7S) = 0. 

In the above equation, prk; is given by (15). 
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